
REVIEW

Intercellular mechanotransduction
during multicellular morphodynamics
Jin-Hong Kim1, Lawrence J. Dooling2 and Anand R. Asthagiri2,*
1Division of Engineering and Applied Science, and 2Division of Chemistry and Chemical

Engineering, California Institute of Technology, Pasadena, CA, USA

Multicellular structures are held together by cell adhesions. Forces that act upon these adhe-
sions play an integral role in dynamically re-shaping multicellular structures during
development and disease. Here, we describe different modes by which mechanical forces are
transduced in a multicellular context: (i) indirect mechanosensing through compliant sub-
stratum, (ii) cytoskeletal ‘tug-of-war’ between cell–matrix and cell–cell adhesions, (iii)
cortical contractility contributing to line tension, (iv) stresses associated with cell prolifer-
ation, and (v) forces mediating collective migration. These modes of mechanotransduction
are recurring motifs as they play a key role in shaping multicellular structures in a wide
range of biological contexts. Tissue morphodynamics may ultimately be understood as differ-
ent spatio-temporal combinations of a select few multicellular transformations, which in turn
are driven by these mechanotransduction motifs that operate at the bicellular to multicellular
length scale.
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1. INTRODUCTION

The remarkable dynamism of multicellular structures is
in full display during development and continues in
adult tissues, such as the intestinal epithelium (van
der Flier & Clevers 2009) and the mammary gland
(Nelson & Bissell 2006). Meanwhile, disruptions in
multicellular morphology, and consequently tissue
function, play a major role in diseases, such as cancer
(Debnath & Brugge 2005). Elucidating the forces that
form and re-shape multicellular structures is integral
to our understanding of development and disease, and
has clear implications for biomedical applications,
such as tissue engineering.

Transformations in multicellular structure are
achieved through mechanical forces that act upon cell
adhesions. Cells adhere to their neighbours and to the
surrounding extracellular matrix (ECM). Significant
advances have been made in our understanding of the
molecular composition of adhesions (Zamir & Geiger
2001; Zaidel-Bar et al. 2007) and their mechanosensitiv-
ity (Geiger et al. 2009). Acting as mechanosensors and
as an interface for force transmission, cell adhesions
play a pivotal role in regulating single-cell behaviours,
such as rolling (Chang et al. 2000), spreading and
migration (Beningo et al. 2001), survival and

proliferation (Chen et al. 1997), and differentiation
(Engler et al. 2004b, 2006).

Multicellular morphodynamics, however, is not the
simple consequence of cell autonomous responses to
local forces. Local forces are transmitted over longer
length scales and propagate their effects at a mesoscopic
level. In this review, we discuss different modes by
which mechanical forces are transduced in a multicellu-
lar context, ranging from bicellular interactions to
larger tissue-scale structures (figure 1). Here, we use
the term ‘mechnotransduction’ broadly to include
both this transmission and re-distribution of mechan-
ical forces and the interconversion of mechanical
forces and biochemical signals.

2. INDIRECT CELL–CELL
MECHANOSENSING THROUGH
A COMPLIANT ECM

An emerging mechanism for cell–cell communication
involves exerting and sensing traction forces on the
ECM. When a cell contracts, it pulls on its surroundings
through integrin-mediated adhesions. This allows the
cell to sense the mechanical response of its environment
and react appropriately (Discher et al. 2005; Vogel &
Sheetz 2006). As a result, the physical properties of
the matrix, in particular its compliance, have a signifi-
cant effect on cell behaviours such as spreading

*Author for correspondence (anand@cheme.caltech.edu).

One contribution to a Theme Supplement ‘Mechanobiology’.

J. R. Soc. Interface (2010) 7, S341–S350
doi:10.1098/rsif.2010.0066.focus
Published online 31 March 2010

Received 8 February 2010
Accepted 12 March 2010 S341 This journal is # 2010 The Royal Society

 on May 18, 2010rsif.royalsocietypublishing.orgDownloaded from 

mailto:anand@cheme.caltech.edu
http://rsif.royalsocietypublishing.org/


(Engler et al. 2004a; Yeung et al. 2005), migration
(Pelham & Wang 1997; Lo et al. 2000; Peyton &
Putnam 2005), proliferation (Wang et al. 2000) and
differentiation (Engler et al. 2004b, 2006). In in vitro
studies of contractility, substrates of varying compliance
are commonly prepared using synthetic polymers, such
as polyacrylamide, by varying the extent of cross-linking
while keeping the adhesive ligand composition constant
(Pelham & Wang 1997). Fluorescent beads can be
embedded within these substrates, and their displace-
ments are measured to produce a map of the traction
forces (Dembo & Wang 1999).

It is becoming increasingly apparent that contractile
forces generated against the ECM not only influence the
behaviour of individual cells but also play a role in gov-
erning how cells interact with each other. As a cell
contracts on a compliant substrate, it produces stress
and strain that can be sensed by its neighbours, thus
providing a mechanical pathway for cell–cell
communication even in the absence of direct contact.
Reinhart-King et al. (2008) have demonstrated this con-
cept by investigating how substrate compliance
influences the contact and migratory behaviours of pairs
of bovine aortic endothelial cells. Using traction force
microscopy, they show that the distance over which a
cell significantly deforms its substrate decreases with
increasing substrate stiffness, and they postulate that
this distance represents the maximum range of ECM-
mediated cell–cell mechanosensing. On soft surfaces,
two cells that collide remain in contact throughout the
duration of the experiment, most likely because the soft
substrate prevents them from generating enough traction
force to break the cadherin bonds formed at the cell–cell
junction. Conversely, cellular collisions on stiff surfaces
are very elastic and cells remain in contact for short dur-
ations before migrating away from one another. On
substrates of intermediate compliance, a pair of cells
repeatedly forms a contact and breaks it. As a result,
they exhibit a lower dispersion than isolated cells and
fail to migrate beyond the measured distance of significant
substrate deformation. This behaviour suggests that, even

after contact is broken, the cells still communicate
mechanically through the matrix and that the substrate
compliance influences cell–cell interactions.

Cell–cell communication mediated by the ECM has
also been observed between human mesenchymal stem
cells (hMSCs) on fibrin (Winer et al. 2009). In this
case, the communication is believed to involve the
strain-stiffening property of nonlinear elastic matrices.
The strain produced by cell contraction stiffens the sub-
strate by several orders of magnitude, thereby changing
the microenvironment of nearby cells. This results in an
alignment and elongation of hMSCs cultured on such
substrates.

The two previous examples demonstrate how con-
tractile forces generated on the ECM may be
responsible for influencing the interactions between
cells cultured in vitro on compliant substrates. Similar
behaviour may be observed at the tissue level as well.
Epithelial and endothelial cells are often separated
from underlying stromal cells by a basement membrane
consisting of proteins, such as laminin and collagen.
The presence of stromal cells significantly alters the
mechanical properties of the ECM through contractility
and matrix remodelling. Elson and colleagues have
shown that fibroblasts compress and stiffen collagen
gels in vitro (Wakatsuki et al. 2000), and that the mech-
anical properties of the tissue vary with fibroblast
concentration (Marquez et al. 2006). These effects can
be sensed by the basal surface of the epithelium and
endothelium, and may play an important role in tissue
homeostasis, development and tumour progression
(Grinnell 2003; Lopez et al. 2008).

3. DIRECT CELL–CELL INTERACTIONS
AND THEIR MECHANICAL INTERPLAY
WITH CELL–MATRIX ADHESIONS

While cells are capable of communicating indirectly
with each other through the ECM, as cells get close
enough to interact directly using cell–cell adhesion

(d )
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(b)
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stroma fibroblast

Figure 1. Modes of force transmission in multicellular systems. In a multicellular context, several intercellular mechanotransduc-
tion motifs can be identified: (a) indirect mechanosensing through compliant substratum (black arrows); (b) cytoskeletal ‘tug-of-
war’ between cell–matrix and cell–cell adhesions (blue arrows); (c) cortical contractility contributing to line tension (red
arrows); (d) compressive stresses (green arrows) acting on the planes represented by the dashed lines and resulting from the
proliferation of neighbouring cells; and (e) forces mediating collective migration (purple arrows) including traction forces,
such as those depicted at the leading edge, and tension that is propagated through cell–cell contacts.
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receptors, such as cadherins, various short-range modes
of cross talk unfold between cell–cell and cell–matrix
adhesions. The differential adhesion paradigm considers
the antagonistic interplay between cell–cell and cell–
matrix interactions at the level of the cell surface. Stein-
berg and colleagues observed this antagonism during
the transition between aggregation and spread pheno-
types of multicellular clusters (Ryan et al. 2001). Cells
with minimal cadherin expression level exhibited low
cohesivity and a spread phenotype even on substrata

that are only moderately adhesive. However, increasing
cell–cell cohesivity by raising cadherin expression
reverts this spread phenotype and promotes aggrega-
tion. Their results demonstrate that tissue spreading
is the outcome of a competition between cell–cell
cohesivity and cell–substratum adhesivity (figure 2a).

In addition to this antagonism at the level of the cell
surface, cell–cell and cell–matrix adhesions are also
coupled mechanically through their joint affiliation
with the cytoskeleton. At the molecular level, actin
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Figure 2. Cross talk between cell–matrix and cell–cell adhesions. (a) The differential adhesion paradigm states that aggregation
is preferred when cell–cell cohesivity outweighs cell–matrix adhesivity, while a spread phenotype is promoted when cell–matrix
adhesivity dominates. (b) Cell-generated contractile forces mediate a ‘tug-of-war’ between cell–cell and cell–matrix adhesions.
(c) A multicellular implication of (b) is depicted in two-dimensional cell culture on elastomeric micropillars. Peripheral cells
exhibit high traction forces on the substrate resulting in the bending of the pillars, while cells in the interior of the cluster dissipate
cell-generated contractile forces against their neighbours.
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Figure 3. Cortical contractility and interfacial line tension as a recurring motif in multicellular morphodynamics. Cell-generated
contractile forces acting along the cortical actin structures are counterbalanced by cell–cell adhesion, contributing to the develop-
ment of line tension at the interface between cells. (a) This line tension presents an energy barrier to cellular rearrangements under
externally applied forces, giving rise to irreversible deformation of multicellular aggregates. (b) Internal asymmetry in local cortical
tension drives intercalation involving the collapse of dorsal–ventral (DV) junctions (indicted by the red line) followed by the
addition of anterior–posterior contacts (indicated by blue lines). (c) Collective cell intercalation propels tissue-wide change in
morphology such as tissue elongation. (d) In a growing epithelium, cell division predominantly results in daughter cells sharing
an edge and cleaving at a side rather than a vertex, posing ‘geometric rules’ governing distribution of cell shapes. (e) Anisotropic
line tension developed at the boundary of two cell populations (indicated by the red line) is responsible for the maintenance of
multicellular compartmentation such as DV demarcation of wing imaginal discs.
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cables associate with adherens junctions at cell–cell
contacts and provide a physical mechanism for cell-
generated contractile forces to act upon cell–cell adhe-
sions. This non-muscle myosin-mediated tension at
sites of cell–cell adhesion is necessary for the formation
and maturation of cell–cell contacts, which are destabi-
lized upon loss of myosin-generated contractility (Conti
et al. 2004; de Rooij et al. 2005). However, excessive
contractile forces can compromise cell–cell adhesions
(de Rooij et al. 2005). Precisely how much contractile
force is imposed upon cell–cell adhesions will depend
on the level of cell–matrix adhesions, which are also
linked to the actin cytoskeleton (figure 2b). In situ-
ations where cell–matrix adhesions are enhanced, as
observed upon hepatocyte growth factor treatment
and on stiff substrates, they are able to withstand con-
tractile forces better, while cell–cell adhesions are
compromised, thereby promoting cell scatter (de Rooij
et al. 2005). Consistent with these observations, cells
are able to form multicellular aggregates better and
undergo tissue-like compaction on a compliant substra-
tum more than on stiff substrates (Guo et al. 2006).
Furthermore, using mammary epithelial cells cultured
in three-dimensional matrix, Weaver and colleagues
showed that increasing matrix stiffness elevates Rho
kinase (ROCK)-generated contractility and focal
adhesion formation among mammary epithelial cells,
in turn weakening adherens junctions and disrupting
organized acinar structures (Paszek et al. 2005). In
this manner, cell-generated contractile forces mediate
a ‘tug-of-war’ between cell–cell adhesions and cell–
matrix adhesions that has implications for multicellular
organization in both two- and three-dimensional
contexts. It is important to note, however, that these
forces at cell adhesions may also induce changes in
gene expression that contribute to cell scatter. For
example, enhanced adhesion-mediated signalling on
stiff surfaces may lead to gene-expression patterns
facilitating the loss of cell–cell contacts and cell scatter
as observed in epithelial–mesenchymal transition.

The cross talk between cell–cell and cell–matrix
interactions can also promote spatial gradients in mech-
anical stresses within multicellular structures. Cells at
the periphery of a cluster extend their free edge into
the surrounding ECM and exert greater traction
forces through their adhesions to the matrix than cells
in the interior of the cluster. In contrast, interior cells
are surrounded by neighbours, and the contractile
forces generated within these cells are imposed upon
their neighbours through cell–cell contacts. By measur-
ing the deflection of vertical elastomeric micropillars,
Chen and colleagues directly quantified the gradient
in traction forces in multicellular clusters and correlated
this gradient to spatial patterns in proliferation
(figure 2c) (Nelson et al. 2005). The introduction of
cytoplasmic-deletion mutant of VE-cadherin, which is
defective in linking cadherin to the actin cytoskeleton,
ablated the spatial gradient in traction forces and the
pattern in cell cycle activity across cell clusters.

In addition to the distribution of traction forces
within multicellular aggregates, the level of soluble
growth factors, such as epidermal growth factor
(EGF), also plays an important role in shaping spatial

patterns in proliferation. We have recently demon-
strated that, in epithelial clusters, cadherin-dependent
contact inhibition is enforced only below a critical
threshold level of EGF (Kim et al. 2009). Thus, only
when the growth-promoting activity of EGF dips
below a threshold is cell–cell contact able to effectively
inhibit the proliferation of cells in the interior of a clus-
ter, leading to a spatial pattern in proliferation. When
EGF concentration is raised above this threshold,
epithelial cells exhibit contact-independent, uniform
proliferation. Intriguingly, this threshold amount of
EGF is tunable: augmenting cell–cell interactions
increases the EGF threshold at which the system tran-
sitions from contact-inhibited to contact-independent
proliferation. Thus, it is evident that a cross talk
between hormonal/growth factor pathways and the
physical distribution of traction forces is involved in
regulating patterns in cell proliferation in epithelial
clusters.

The maturation of cell–cell contacts in epithelial
sheets can be accompanied by the recruitment of the
focal adhesion protein vinculin from sites of cell–
matrix adhesions to cell–cell junctions. This change in
vinculin localization leads to the reorganization of
stress fibres associated with focal adhesions at the
cell–substratum interface into cortical bundles that
run parallel with cell–cell contacts (Maddugoda et al.
2007). During epidermal stratification, cortical actin
bundles further polarize into the apical plane and
form a continuous cytoskeletal network spanning the
entire epithelial sheet. Coordinated tension developed
through these apical actin cables enables cells to slide
under neighbouring cells by transiently disrupting
their cell–substratum interactions (Vaezi et al. 2002).

4. CORTICAL CONTRACTILITY AND LINE
TENSION ALONG CELL–CELL
CONTACTS

Cell-generated contractile forces along cortical actin
structures in the apical region of epithelial cells also
contribute to line tension along cell–cell interfaces.
This line tension plays a significant role in cellular
rearrangements during processes such as intercalation
in response to external and internal forces, in shaping
and sizing cells in growing epithelial sheets, and in
maintaining multicellular compartments (figure 3).

4.1. Line tension as an energy barrier for
plastic deformation

At a macroscopic scale, line tension is involved in the
plasticity of multicellular aggregates (i.e. irreversible
shape change of the aggregates) exposed to external
compressive load (Marmottant et al. 2009). Line
tension provides an energy barrier for cellular
rearrangements within the aggregates. Cell aggregates
under high compressive stress overcome this barrier
and undergo not only elastic cell shape change, but
also cellular rearrangements involving shuffling of cells
(intercalation). These cellular rearrangements persist
even after the imposed external stress is removed, ren-
dering a plastic deformation (figure 3a). In contrast,
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in a low-stress regime where line tension is not over-
come, aggregates exhibit only cell shape changes
through spontaneous membrane fluctuations, and,
when the external force is removed, the original
aggregate shape is recovered.

4.2. Line tension in intercalation

Asymmetric line tension provides the driving force for
intercalation during germ band elongation in Drosophila
embryos (Rauzi et al. 2008). In this process, the epi-
thelial tissue elongates along the anterior–posterior
(AP) axis through the intercalation of cells along the
dorsal–ventral (DV) axis. This process involves the
shrinkage of DV contacts (v-junctions) followed by
the establishment of new cell–cell contacts parallel to
the AP axis (t-junctions) (figure 3b). Myosin II is pre-
ferentially localized at v-junctions (Lecuit & Lenne
2007), and this localization corresponds to greater ten-
sion at v-junctions than along t-junctions as
quantified by local laser ablation and the consequent
recoil speed of the cell–cell interface (Rauzi et al.
2008). This asymmetry in local cortical tension drives
the tissue-wide change in morphology (figure 3c). Fur-
thermore, this tension increases as the v-junction
collapses, suggesting that cortical elasticity is also a
critical factor.

4.3. Line tension in shaping cells in growing
epithelium

During the intercalation process described above, the
number of epithelial cells remains fixed and the predo-
minant activity involves the relative shuffling in the
position of cells within the epithelium. In other situ-
ations, the epithelium undergoes a significant change
in cell number while the relative position of cells does
not change markedly. An important feature of such
growing epithelial sheets is the distribution of polygonal
cell shapes. While most cells are hexagonal, there are
also significant numbers of cells with a shape that
ranges from quadrilateral to octagon. Gibson et al.
(2006) show that simple ‘geometric rules’ of epithelial
cell divisions are sufficient to predict the distribution
of polygonal shapes in the developing epithelial wing
primordium of Drosophila melanogaster. These rules
were based on observations such as the following: the
vast majority of epithelial divisions (94%) result in
daughter cells that share an edge, and cell divisions
tend to cleave a side rather than a vertex (figure 3d).
A Markov model based on these and other geometric
rules predicts that a growing epithelial sheet reaches a
distribution of polygonal shapes consistent with that
observed in developing wings. In fact, the predicted dis-
tribution of cell shapes matches that observed in
epithelial tissues from vertebrate, arthropod and cni-
darian organisms, suggesting that a common set of
geometric division rules governs the shapes of epithelial
cells in growing tissues throughout the metazoa.

It should be noted, however, that the distribution of
polygonal shapes is not the only feature of interest in a
growing epithelium. For example, the average size of a
cell increases as cell number increases, and cells

occasionally desorb or delaminate from the epithelium.
Furthermore, the geometric constraints of cell divisions
likely arise from mechanical forces and biophysical
properties, such as membrane elasticity, contractility
and cell–cell adhesion. This raises the question of how
these forces and biophysical properties shape cells
within a growing epithelium. Farhadifar et al. (2007)
examined this issue by developing a model in which
the positions of vertices in a growing epithelium are
determined by the minimization of energy associated
with the contractility of the cortical actin–myosin
network, line tension along apical junctions and cell
surface elasticity. Their model predictions of frequency
of cell delamination, cell area and polygonal shapes
matched those with the developing Drosophila wing
disc only for specific ranges of parameter values.
These results suggest that the biophysical properties
of epithelial cells are wired to give rise to the observed
cell shapes in growing epithelial tissues. It would be
interesting to determine whether these parameter
values are also necessary to give rise to the geometric
rules of cell divisions used in the Gibson model.

4.4. Line tension in compartmentation

Anisotropic line tension is involved not only in local
re-shuffling of neighbouring cells during intercalation
(figure 3b), but also in maintaining long-range barriers
between two cell populations (figure 3e). This role of
partitioning cell populations was first suggested in the
context of DV demarcation of wing imaginal discs
(Major & Irvine 2005, 2006). More recently, the magni-
tude of anisotropic line tensions has been directly
measured and computationally modelled in AP demar-
cation of wing imaginal discs (Landsberg et al. 2009;
Vincent & Irons 2009), and eliminating this line tension
has been shown to compromise the re-establishment of
AP compartmentation following cell divisions at this
interface during Drosophila embryonic development
(Monier et al. 2010). Consistent with the idea that
anisotropic line tension may be a recurring motif for
maintaining cell compartments, the above studies
span AP and DV compartmentation in Drosophila
wing discs and AP compartmentation in Drosophila
embryonic development.

4.5. Contractility and cell–cell adhesion:
opposing contributions to line tension?

In the above models of line tension along cell–cell junc-
tions, contractility opposes cell–cell adhesion (figure 3).
However, there is some evidence that contractility can
influence the endocytosis of cell adhesion receptors
(Sahai & Marshall 2002) while planar cell polarity
proteins regulate the exocytosis and recycling of cell-
adhesion proteins (Classen et al. 2005). Furthermore,
in the case of cell adhesion to the ECM, contractility
is essential for forming and maintaining focal adhesions;
in a similar manner, contractile forces are involved in
promoting the maturation of cell–cell adhesions
(Yamada & Nelson 2007). Thus, it remains an open
question to what extent cortical contractility and
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cell–cell adhesion ought to be viewed as independent
opposing contributions to line tension.

5. FORCES ASSOCIATED WITH CELL
BEHAVIOURS

The loss, accrual and movement of cells owing to apop-
tosis, proliferation and migration, respectively, can
generate local forces on direct neighbours and even
propagate to affect tissue morphology at a mesoscopic
scale.

5.1. Forces associated with apoptosis

The extrusion of apoptotic cells from an epithelial sheet
has been observed in the context of various develop-
mental processes and is essential to maintain the
integrity of the epithelium and its barrier function.
Rosenblatt et al. (2001) showed that an apoptotic cell
within an epithelial layer rapidly develops an actomyo-
sin ring around its periphery and signals to its
neighbouring cells to induce actin cable formation at
the interface between the apoptotic cell and neighbour-
ing live cells (figure 4a). Rho-mediated contraction of
these actin cables pulls neighbouring cells towards the
apoptotic cell and extrudes the apoptotic cell out of
its parental epithelia, rapidly sealing the opening that
could have been left by the removal of the dead cell.
In fact, selective blocking of Rho activity in neighbour-
ing cells aborted the extrusion of the apoptotic cells
completely, disrupting the integrity of epithelia. Thus,
apoptotic force involves not only an autonomous con-
tractile force in a cell undergoing death, but also
collective force developed among live cells surrounding
the apoptotic cell.

Such forces involved in the extrusion of apoptotic
cells also propagate through cell–cell interactions to
affect the long-range morphology of tissues. An example
involves dorsal closure of the Drosophila embryo.
During this process, an elliptical opening in the dorsal
epidermis is occupied by the amnioserosa (AS) and is
covered by two dorsally migrating epithelial leading
edges with the two flanks advancing along the dorsal
midline (figure 4b). A precise coordination of forces,

including the contractility of the AS, contributes to
sheet migration and dorsal closure (Kiehart et al.
2000). The apoptosis of AS cells contributes signifi-
cantly to the contractility of this tissue and thus the
rate of dorsal closure (Toyama et al. 2008). By quanti-
tatively comparing the recoiling velocity of the leading
edge of lateral epidermis upon laser ablation in wild-
type and apoptotic mutants, it was estimated that
apoptosis of aminoserosa cells accounts for approxi-
mately one-third to one-half of the net force developed
at the leading edge of lateral epidermis. The contractile
forces involved in extruding apoptotic cells may be
transmitted by cell–cell contacts to the lateral epider-
mis, contributing the force needed for dorsal
migration of lateral epithelia and fusion.

5.2. Mechanical stresses imposed by
proliferation

In a growing tissue in which cellular rearrangements are
restricted in the time scale of cell division, mechanical
stresses imposed by an increase in cell mass (i.e. prolifer-
ation) are not fully released and thus rapidly
accumulate in a local environment. One of the pheno-
typic features of rapidly growing tissue is that cell
spreading against underlying substrate decreases with
increasing cell density. Restricted cell spreading further
correlates with a decrease in stress fibre formation,
which in turn destabilizes focal adhesions. Consistent
with these changes, when plated on varying sizes of
adhesive patterns consisting of micropillars, cells
grown on smaller islands exhibited significantly reduced
cytoskeletal tension and contraction force (Tan et al.
2003). In addition, accumulation of mechanical stresses
accompanying the aforementioned events has been
correlated with cell cycle arrests in high-density culture
(Liu et al. 2006).

Notably, coupled with other microenvironmental
factors, force induced by proliferation plays a central
role in patterning multicellular behaviours in the con-
text of developmental processes (figure 5). Patterning
and growth regulation of Drosophila wing imaginal
discs involves the gradients of morphogens including
Decapentaplegic (Dpp). However, while it is clear how
reduced morphogen concentration far from the source

(a) (b)

Figure 4. Forces associated with apoptosis and their implications for Drosophila dorsal closure. (a) An actomyosin ring forms in
both the cell undergoing apoptosis (grey) and its live neighbours. Contractile forces along this actomyosin ring generate a force
(red arrows) that pulls neighbouring cells into the space occupied by the extruded cell and prevents gaps in the epithelium. (b)
This force associated with apoptosis contributes to dorsal closure in the Drosophila embryo. The contractile forces generated by
apoptotic cells (grey) in the AS contribute to tension (blue arrows) along the leading edge of the lateral epithelia tissues.
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would halt cell proliferation at the edge of a developing
tissue, how cell proliferation and tissue growth stop near
the morphogen source remained unclear. Shraiman
(2005) theoretically showed that, at the region of high
morphogen concentration, mechanical stresses rapidly
accumulate as a result of the high rate of proliferation.
This accumulated mechanical stress in turn inhibits
morphogen-induced proliferation. Thus, once cell pro-
liferation ceases at the edge of a developing tissue
owing to low morphogen concentration, continued pro-
liferation near the morphogen source would escalate the
local mechanical stress and stop the growth of tissue as
a whole. Thus, mechanical stresses would serve as a
local negative regulator of growth, thereby affecting
growth patterns and organ size (Hufnagel et al. 2007).

5.3. Forces driving collective migration

The mechanics of migration in single cells have been
widely studied, revealing the importance of protrusive
forces that drive the extension of the leading edge of
the cell and contractile forces that detach the trailing
edge and pull the cell body forward (Lauffenburger &
Horwitz 1996). However, less is known about the

mechanics of sheets and strands of cells moving
together, a process known as collective migration.
Given that these cells not only adhere to the surround-
ing matrix but also remain in contact with each other
through cell–cell adhesion proteins, such as cadherins,
one would expect the interplay between mechanical
forces involved in cell–cell and cell–matrix adhesion
to play a major role in the behaviour of such systems.
Understanding how collective migration forces are gen-
erated and transmitted between cells has important
implications in disease and physiology.

Collective migration is a key phenomenon in tissue
morphogenesis and is widely observed in developing
organisms (Friedl & Gilmour 2009; Rørth 2009).
Wound healing is a classic example of collective moti-
lity, and in vitro assays of this process have provided
a powerful model system to study the movement of
two-dimensional cell sheets. Other examples include
border cell motility during Drosophila ovary develop-
ment (Rørth 2002; Montell 2003) and branching
morphogenesis in mammary epithelia (Ewald et al.
2008).

Two important questions arise concerning how the
forces that lead to wound closure are generated. The
first is whether wound healing is driven predominantly
by proliferation within the monolayer that pushes it for-
ward or whether cell migration propels the healing
process by pulling the sheet into the wound. The emer-
ging consensus appears to be that cell migration at the
healing front is the key driver with proliferation helping
to maintain the monolayer (Gov 2007). Several studies
have suggested a leader–follower model, wherein the
leading cells at the wounded edge migrate and pull
along the trailing cells. For example, in both IAR-2
and MDCK epithelial sheets exposed to model
wounds, leaders temporarily lose their epithelial charac-
ter and develop lamellipodia and focal adhesions that
protrude into the wound (Omelchenko et al. 2003;
Poujade et al. 2007). Leader–follower behaviour is
also observed in a wounded endothelial monolayer in
the presence of fibroblast growth factor (Vitorino &
Meyer 2008).

Rho-dependent cytoskeleton reorganization appears
to play a significant role in the leader–follower model
of wound healing. Omelchenko et al. (2003) note that
leader cells disassemble their cortical actin cables
upon wounding and reorient filaments perpendicular
to the advancing front. Follower cells maintain their
cortical actin cables but exhibit radial, rather than tan-
gential, cell–cell contacts with leaders, indicating that
tension is generated by the leader cells. Poujade et al.
(2007) observe similar behaviour in leader cells and
also note the development of a supracellular actin belt
in follower cells that may transmit force as in the
purse-string wound closure mechanism.

If we accept the notion that wound healing is driven
primarily by cell migration rather than proliferation, a
second question that arises is where the traction forces
necessary for migration are generated. In the simplest
leader–follower model, traction forces would be gener-
ated by the first row of cells (i.e. the leaders), so that
followers need only to release their attachments and
be pulled forward. Recent findings, however, suggest

morphogen
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distance from morphogen source

epithelial sheet expansion

time

cell cycle arrest owing
to low morphogen
level

mechanics-induced
cell cycle arrest

high stress

low stress

Figure 5. Role of proliferation-induced mechanical stresses in
growth patterning and organ size determination. During
development of Drosophila wing imaginal disc, spatial gradi-
ents in morphogens regulating cell growth are established by
their localized secretion and transport from source cells (red
cells). The graph depicts the steady-state gradient in morpho-
gen concentration as a function of distance from the
morphogen source. Below the graphs, grey-scale colour gradi-
ents in the cells indicate the level of mechanical stress owing to
crowding. At early stages of the development (top cell array),
cells proliferate uniformly, expanding the epithelium without
local accumulation of mechanical stresses. Later, cell growth
ceases at the edge of the epithelium owing to low morphogen
level (bottom cell array), and mechanical stresses accumulate
near the morphogen source as a result of imbalanced growth.
It is postulated that this mechanical stress may desensitize
cells to the locally high levels of growth factor and lead to
mechanics-induced cell cycle arrest (Shraiman 2005).
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that this is not the case and that, instead, the traction
forces involved in propelling wound healing may be gen-
erated by cells much further into the monolayer (Trepat
et al. 2009). Thus, in growing MDCK sheets, significant
traction forces are observed far away from the leading
edge. Furthermore, a force balance shows that the ten-
sional stress is propagated into and accumulates within
the sheet, suggesting long-range transmission of forces
from the leading edge into the interior of a growing
epithelial sheet (Ladoux 2009). This view may be sup-
ported by the observation of cryptic lamellipodia
protruding from submarginal cells in the direction of
the wound as well as the ability for these cells to com-
pensate for a loss of motility in the first row of the
advancing edge (Fenteany et al. 2000; Farooqui &
Fenteany 2005).

The observations from these studies indicate that col-
lective sheet migration and wound healing may occur by
different modes depending on the tissue environment. In
one extreme, cells within a monolayer may behave nearly
autonomously and generate their own motile forces
(Bindschadler & McGrath 2007). While leader cells
may be present in such cases, they act primarily to
guide or polarize their followers to move in the direction
of the wound. In the other extreme, leader cells may
exert enough force to physically drag follower cells
behind them (Friedl et al. 2004). Most observations
appear to suggest a mode in which both behaviours are
important. As a result, the migration of each cell arises
from its own traction forces as well as the forces exerted
by its neighbours. The relative strength of these forces
could depend on a number of factors, including mono-
layer size and density, the strength of cell–cell
adhesions, the matrix over which the sheet is migrating
and the presence of soluble factors. Such behaviour
would be consistent with the recent hypothesis that col-
lective morphogenic movements are controlled in vivo by
modular mechanical properties (Montell 2008).

6. CONCLUDING REMARKS

The modes of force propagation described in this review
are recurring motifs as they contribute to morpho-
dynamics across several distinct multicellular contexts.
An intriguing possibility is that these and other force
transmission modalities may enable a well-defined set
of multicellular transformations. Indeed, seemingly
diverse morphological patterns observed in vivo may
be an outcome of different coupling and executions of
these common motifs. For example, diverse epithelial
morphogenetic phenotypes observed during dorsal clo-
sure and germ band extension in the Drosophila
embryo and during convergence of the zebrafish trunk
neural ectoderm are simply quantitative combinations
of cellular deformation and intercalation (Blanchard
et al. 2009). The rapidly growing interest in dynamical
imaging of development in several model organisms
should add to these findings and provide a more
complete description of possible multicellular trans-
formations. Tissue morphodynamics may ultimately
be understood as different spatio-temporal combi-
nations of a select few multicellular transformations,

which in turn are driven by a small group of mechano-
transduction motifs that operate at the bicellular to
multicellular length scale.
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